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SYNORSIS

Thesis entitled ¢ AWBARMONIC OSCILLACC) S I QUANTUL MECHANICS,

SUY ltLeq by SUBLDIT P. BEALHACGAD to the Department of Physics,
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in partial fulfilwent of the requirement of the Ph.D. degree.

<

In this work the following eigenvalue problems have been

investigated.
. L ) . . . e -2, 2 4
(i) the cuartic enharmonic oscillator (Hamiltonian H=p~+i~+Ax",
p = ~i§§, A >0) and the associnted problem of the pure

2

quartic oscillator (H = p~ + Ay JA > 0),

.. . . . , 2 2
(1i) the general anharmonic oscilletors (H = p~ + 7 + Ax

A >O? po= 3:49'-°)s

21

9

z 4
(iii) the double minimum occillator (I = pZ oyl AX ", A> 0O).

kigsenvalues and eigenfunctions of these systems are
obtained in all regimes of the gueontum number n and the

enharmonicity constant A . ‘'the computed cigenfunctions are

then used to obtaiwv the transition moments. The eigenvalues

reported in this wosk are accurate to 1) gignificant figures

and the troncition moments Lo 12 fifurca.

-

‘"he eigenvaluce of the anharmonic oscillators

2 2 dw 95 ey s N
(H = p° + x° + “) fall into two distinct classes (Hioe
ct al. 1976). 1In the low n, low X regime thc cigenvalues
differ slightly from the harmonic oscillator levels whercas

in the high n, high A regime they differ slishtly from the
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2 21 .
+ Ax"¥) eigenvalues.

purc mnharmonic oscillator (H = p
Beteen these two regimes lies the "boundary layer’ in which
the cigenvalucs 2re neither 'mear hormoric' nox near ‘pure

el . ()

onhermonict, 4l ¢ exigtence of diffcrent repimes implies

«©

e 0} o PSR |

different oscilievion properivies ¢f the corresponding eigen—
functions. We assert that this fact must he explicatly
included in solvinz the cigenvaluc proplcm. fhe method
applicd 1n this work (Bancriec 1976) involves the use of an
appropriately (according to regime) scaled basis for the
expansion of each eigenfunction. Jhe appropriately scnled
vagis simulates the different oscillavion propertics of the

eigenfunctions in c¢ifferent regimes and makes pogsible a

uniform treatment of the problem in alll regimes.

‘e Chapter I of the thesis ig a review of various
earlier methods uscd to solve the anharmonic oscillator
cipenvalue problem. ‘thesce methods arc suitable only in a
particular regime of (n,x) and do not give cigenvalucs to the
snme accuracy when cxtended to other recgimece. The construc--
tion of an appropriatcly gscaled basiu ond the method used
in this thesin for the computation of the cigenvalues 1is
described in Chapter II. The actuval computation of the
cigenvalucs ig reduced to the determination of the roots of
a transcendental equ~tion in the encrgy. This is done
nunciically. Accurate eigenvalucs and cigenfunctions of

the guartic anharmonic and the purc gquartic oscillator arc



then obtained for verious volucs of (n,A) covering all dif-
ferent regimes. In Chaptor III we show that the cigenvalue
problem of the gencral anharmonic oncilletors may be solved

for any 1 in 211 rczimes of (n,A) usins the samc method.

In Chapter IV accurate ciscnvalues and ciccnfunctions of
the double winimum oscillasor arc calculated. .A KB expres-—
sion for the splitting between the lover cigenvalues, bunched
in pairs, is obteined and the WKB valucs are compased with
the corresponding accurate valucs. In Chapter V, the transi-
- Uk
(

tion woments which arc the matrix clements 0F x k = integer)

[

between the anharmonic oscillators cigengitates are calculated
using the computed ecigenvalucs 2nd eigenfunctions. The
trangision momenty for any particuvlor trangition seticly an
exact linecar recurrence relation (Bancrjce 1977) from which
the hisher moments for that transition may be obbtaincd

recurgsively, without intcgration.

Banerjec KX 1976 TILetters in liath. Phys. 1 323
Banexrjee K 1977 Phys. Letters AGT 22

Tioc F T, MacMilicn D and lMontroll I, W 1976 J. Math. Phys.
17 1320



CHAPTER I

INTRODUCTION

The study of anharmonic oscillators is a subject of
very general interest. The quartic anharmonic oscillator
described by the IIamilfonian H = p2 + X2 + Az4 (A>0 is the
enharmonicity constant) is the simplest example of nonlinear
oscillation in classical mechanics (Xrylov and Bogoliubov
1943). The investigation of the same problem in quantum
mechanics is useful as a model problem in molecular physics
and field theory In molecular vibrationc, the potensial
functions are quite often ol the mixed harmonic-~guartic type.
Indeed, in some cases of interest, due to accidental cancel-
lation of the quadratic terms, the povtential functions become
nearly puse quartic (see Chan and Stelman 1963, reid 1970).
The guartic anharmonic oscillator is ofi particulor interest
in field theory because it is a wodel of X¢4 auantum fielad
cheory in one-dimensional space-time. Uhe investigations from
the field theoiy point of view are referred to in the work of
Bender and Wu (1976). A general account on the anharmonic
oscillator problem may be found in Hioe and iontroll (1975)

and Hioe, MacMillen and Montroll (1.976).



There have been persistent attempts for finding The
eigenvalues of the quartic anharmonic oscillator since the
beginning of quantum mechanics. In the earilest attenpts
the formal Rayleigh Schrdvdinger pecturbation method vas
applied to solve this eigenvalue provlem in which the Ax4
term was congicdered as the perturbation on the harmonic
oscillator Hamiltonian HO = pg + XZ, Dender and ‘u (1969)
calculated nearly 70 expansion cocfficients of the perturba-
tion serices in powers of A zor the ground stavte energy
and observed an unexpected rapid increase in theixr magni-
tudes. A detailed analysis then revealed that the perturba-
tion series for the eigenvalues in povers of X is not
convergent {or any vositive value of A , no metter how
small. Bender and YWu (1969) studied the analytic properties
of the eigenvalues En(x) (n being the gquantum number) in
the complex A plane and ghowed thot there is a third order
branch point at A = 0. It was further observed th~t A =0
is not an isolated singularity but is a limit point of an
infinite number of branch points of En(l)b Simon (1970)
proved the above properties of Bn(k) by mo:.e rigorous and
technically sound arguments. In the languege of perturbatior
theory the nonanalyticity of En(l) implies thet the perturba-

tion series of En(x) in powers of A is non-convergent.

The following scaling argument due to (ymanzik ig

si;nificant in thisg connection. On performing the scaling
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. " -1 . .
transformation x +ax, p+a p on the Hamiltonian H(k,i)
2 .2, .4
p - lkx™+Ax  we ohtain

Vil ‘
H(k, ) = “mHak, a®)) . (1.1)

a
since thc abowve gealiny, transformation ic implewentable by
unitery transfo.mation.the o sides of can. (1.1) hove
identical eirenvalues. The relatior (1.1) thus ensu_es
the cirenvalue problem ol thoe guawrtic anharmonic oscil-—
laco. may bc completely des

ribed in terman ol Gle reduced

O o

c
.- . 2 2 4 s
Uamilionian H(L,A) = p° + = + Ax’. Settins a~ = 1/A, onc

ontaings

Ell(-]"l) = )\1/3 E'n()\ “2/;91) o (l(Za)

Henco,

B (1) ~ A7 B_(0,1) a5 dve o (L.2p)

Since En(o,l) is independent of A, En(l,k) ~ Gy Al/) for

1_84 :":’L)C >\ °

The difficulties in perturbasion appiroach may algo be

ong considery the ecauation Y = EY 1n momentum

120}

soen i

representation (Hioe and [lontroll 1975):

4
(ASm = Sy v p%) Y =Ty, (1.2)
dp’ dp

The perturbation paramcter A aoppcars herc o3 the coeffi.-
cicent of the hirhest dexivative, It ig well tmown that

the expansion of the solutions of such diilferential eauation
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in power series of the small parameter is non-convergent
(anDyke 1964). It ig therefore no% so surprising that the
Rayleigh Schrdédinger perturbation expansion of the anhar-
monic oscillator eigenvalues in poiers of A fails to con-
verge, The perturvation treatment ol this problem in clas-
sical mechanics is instructive in this counncection. It
consists of obtaining approximate solutions with the help
of the expansion of the displacewment in power series of

the anharmonicity constant. It leads to golutions that -
contain secular terms like tT sin at, +™ cos at in which
the time 't' appears outside the sinc and cosinc symbols.
The secular terms in a finite term expansion introduce non-
periodic solutions and causc the calculated displacements
to become arbitrarily large at large t. Further, the total

energy becomes a function of time, violating the encrgy

conservation principle (Bogoliubov and Mitropolsky 1961).

The difficulties arising in the guantum mechanical.perturbawé

tion expansion may be viewed in this context.

A detailed analysis of the perturbation serics of
En(l) shows that it is asymptotic in naturc (Simon 1970).
Juch series are usually summed uniquely through various
summability techniques such as Stieltjes Padé\or Borel
methods. Loeffel et al. (1969) have proved that the
perturbétion series sums under Padé approximatioh to the

. ' . . s
actual eigenvalue. The Pade approximation in general




consists of replacing the power series by a sequence of
rational functions f(M,N) of the form of a polynomial of
degree M divided by another polynomial of degree N. Simon
(1970) calculated the ground state energzy by this approxima-
tion for various values of A, Hig results shoir that the
Padé approximants converge gquickly Ffor O < A <l but Ffor

A >1 the rate of convergence is not very good. Graffi

et al. (1970) described how improved values of EC(A) zan be
ovtained by using Pade approximants to the Dorel summability
method. Reid (1967) showed that the perturbation series can
also Be summed by converting it into ecuivalent continued
fraction and obtained the ground state as well as a few
excited state eigenvalues lor various values of A. The
acgrecment of the eigenvalucs obtained from these wvarious
summability methods with the corresponding accurate eigen-
values is found to be poor unless n and A are sufficiently

small.. The scope of these methods in therefore limited to

swmall n, small ) values only.

Various variational and numerical methods have been
widely employeld by meny authors either to the quartic
anharmonic oscillétor problém or to the<associated problem
of ihe pure quartic oscillator (H = p2 + xx4,x > 0).
Calculationsyare geneially done in the harmonic oscillator

vasis {x™ e“X%Q} and the usual technigue is 6 truncate

an¢ diagonalize a large but finite matrix. Results of such




calculations are summarised in Table (I.1l). They differ
from one another either in the method of diagonalization or
in the size of the basis used. Some calculations for upper
and Jlower bounds of first Tew eigenvalues with varying
anharmonicity were done by Bazley and Fox (1961) and Reid
(1965). The procedure for lower bounds used by Bazley
and Fox was to construct intermediate llamiltonians Hk such
that H° < Hl < H2 ... €H and to determine eigcnvalues of
successive Hk. Reid uscd the method of Lowdin (1965) for
ohtaining the lower bounds. The upper bounds were calculated
by employing the usgual Rayleigh-Ritz vaviational approach.
It may be noted that in these calculations the gap betwecn

the upper and the lower bounds increases rapidly on increasiné

n or A (e.g. in Reid's work the gap, which is 0(10“15) for
1
)

!
]
i
{
}
b

EO(X = 0.25), becomes 0(10 ™) fou Eg(x = 1.0)).

i
Biswas et al. (1973) used the 'Hill determinant' method!
to obtain first eight eigenvalues of the quartic anharmonic g

ogscillator lor values of A in the range 0 < A <100. ‘[hey
used an expansion in terms of the Ffunctions {xT e"xz/z}
for the eigenfunctions and obtained eigenvalues by finding
the roots of a sequence of characterigtic polynomials in E.
The polynomialg corresponded to various order truncations

of the Hill determinant. For higher eigenvolucs or for !

higher X the numerical errors in their work become too severe
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The results of the variational and numerical calcula-
tions show that these methods are suitable for the evaluation
of a few lower eigenvalues and for moderate anharmonicities.
The accuracy of the results is scriously affccted on increas-—
ing n or A and is not necessarily improved by increasing
the gsize of the basis. Further, the eigenfunctions obtained
from variational calculations are far less accurate than the
corresponding eigenvalues. DIvaluation of matrix elements of
operators using such eigenfunctions is not expected to yicld

values of known or definite accuracy.

The WKB method has been used for obtaining approximate
eigenvalues for high n. In the WKB approximation (Titchmarsh

1961),
B (0,1) = ¢ (n+ 23, ¢ =22/3(1.3576) (1.4)
It is known from eqn. (1.2b) that the quartic anharmonic

z
oscillator eigenvalues En(l,x) = ll/) En(O,l) in the large

A limit. Hence, for large n, large i -
E(10)= ¢ 27 (m+ DY (1.5)

A more sophisticated WKB expression for E (1,)) is obtained
by Hioe and Montroll (1S75); see eqn. (1.6.c) later.
The most comprehensive work on the anharmonic oscilla-

tors is due to Hioe and Montroll (1975) and Hioe et al. (1976

They distinguished two limiting regimes of values of n and ).

v




In one regime the energy cigenvalues differ slightly from
the haermonic oscillator levels; in the other they differ
slishtly from the pure quartic oscillator eigenvalues. These
regimes are called the 'near harmonic' regime and the'near
quartic'regime, respectively. Between these two regimes
lies the 'boundary layer' in which the eigenvalues are
neither 'near harmonic’ nor 'near quartic’. 'They developed
fast converging algorithms for computing the eigenvalues

in small n regime by writing the cigenvalue problem in
Bargmann representation and solvin; the associated difference
equation. The eigenvalues were thus computed to 8~9 signi-
ficant figures for n =0, 1, ... 8 and for values of X in
the range .004< X £40000. They also constructed se&eral
simplc.formulae for En(k) with different ranges ol validity
which when combined give good approximations (about & signi-
ficoent figures) to En(k) except in thc 'boundary layer'.

"he formulge with their ranges of validity are as follows:

(a) Tor the near harmonic regime
(1) (n+2) 2 (n+2)
[4 + 3 A(2n+3)]

n(n-%)%(n-1)
n+l) (n+2) (n+3) (n+d) _
32 4+3 A (2n+5) | [4+3 (2n-1)1

Enﬁx) = (2n+1) + %).{1&2n(n+l)} - 12{

-+

gl 0 02 o




10
(v) For small n, large ) region
i,(0) = Ao e, + « ~2/3 4 B2 ~4/% c..], (1.6Yb)

where the congtants € o and werce detcrained by Ffittin
n Y

n’ n
cgn. (1.6Db) to the numerical .values of Eﬂ(x) for cach stase

up to n=10.

(c) TFor large n, large X region

I\)
~
Wi

B (0) =27 [of (n+ ) e }4/3 + (n*l)z/)
n

A3 R (1.0c)

The above cxprcgsion results from a detailed investigation
of the WKB approximatioa formula and consists of expanding
the ¢llipkic integrals in the WKB formula in a serics in s i
the constants ¢, 2 and b arc identificd from this expansion. |
It mny be mentioned here that Mathe s and lsvaran (1972) also
obhtained some approximate formulae through a semiclassical + reatmen
|
Recensly, natheds ond Covinderajan (1S77) used a ‘residue

squating method'’ foi the iterative diocgonslirzation of the

4

guartic anhermonic oscillacor TNomiliounian in which the Ax

tern ic agssuwced Lo be o perturbation on the rest. In this
work the off diagonal part (of order ) compcored to,the
disgonal part) is successively reduced %o ordera xg, A4, AB,
«... » They obtaincd four lowest even parity eigenvaluecs and

an approxim-te analytic formula for En(x), similar to the
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equation (1l.6a), which pgives g¢ood approximations to the

eigenvalues in the ncar harmonic rcgimc.

It ig scen irom the above discuzsion that the various
methods, which have becen applicd to solve the anharmonic
ogcillator cigenvalue problem, are suitable only in some
particular regime of (n,\) and do not‘give eigenvalues to
the same accuracy when extencdced to other regimes. Moreover,
they; do not yield accuratc cipenfunctions. In contrast, we
usc a method (Bancrjee 1976) to obtain the eigenv..lucs of
the gquartic anharmonic oscillator wiich applies with uniform
and arbitrarily hich accuracy for all values of n and A.
he method also yields eigenfunctions of accuracy comparable
with that of the eigenvalues which are used for the compuca-
tion of high accuracy matrix elements. In the next chapter
the method is described and the eigenvalues and the cigen-
functions of the quartic anharmonic oscillator and the asso-
ciated problem of the pure quartic oscillator arc obtained.
The eigenvalues, accurate to 15 significant figures, are
presented for various values of (n,\ ) covering all the
different regimes. We show in Chapter III that the method
may be extended to solve general.anharmonic oscillator
(H = p2 + x° 4 Xx2u, uw = 3,4, ...) eigenvaluc problen.
Eigenvalueé of the sextic (p=3) and the octic (u=4) anharmonic
oscillators are thus obtained accurate to 15 significant

figures in all regimes of (n,X). In Chapter IV the eigenvalue
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. , . .. . . . 2 .2
spectrum of the double minimum oscillator (H = p~—x +xx4,

» > 0) is investigated. le lower cigenvalues of the double
minimum oscillator are closely bunchcd in pairs for small A,
These eigenvalues have been evaluated accurately using the
samc method. A WKB cxpresgsion for thc splitting between
the eigenvalues bunched in pairs is obtained and the WKB
valucs are comprrea with the corrcsponding accurate valucs.
In Chapter V the transition moments between the anhharmonic
oscillatvor ecnerpy eigenstafes are obteined from thce computed
eigenvalues and cigenfunctions. Further, the multipole
transition moments are shoim to satisfy an exact lincar
rccurccnce relation which is valicd for any polynonial

potential.

‘




CHAPTER II

THE QUARIIC ANHARMONIC OSCILLATOR

In thir chapter we determine accurate eigenvalues and
eigenfunctions of the guartic anharmonic ozcillator
(H = p2 + X2 + lx4, A >0, p=-~i %E) for various values of
the quantum number n and the anharmonicity constant A. 'The
existence of two cistinct regimes of wvalues of (n,A), namely
tlie 'mear harmonic’ and the ‘near quartic', separated by a
'boundary layer' implies different oscillation properties of
the corresponding eigenfunctions. Ve assert that this fact
nust be explicitly included in solving the eigenvalue problem.
Ffollowing Banerjee (1976), it iz shown in the next section
that the basis functions (used in the solution of the eigen-
value problem) may be appropriately scaled to gsimulate the

oscillation properties of the eigenfunctiont in all regimes.

IT.1 Scaling and the Appropriate Scaling Formula

'The eigenfunctions ﬁn(X;l) may be expended in the basis
{x"e™ % }asg;
2 ©0

V_(xy2) e”* 1 a %™, (2.12)
n*? oo T
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where the scaling is introduced throush the parameter ‘a'.
For an elfective expansion the scaling ¢« is chosen such that

a sufficient number of the loter wmembers of the basis func-
tions (at least n fow the n-th state) have tl.eir main contri-
bution in the region of ogcillation and outside iv ther decay
monotonically Since the region of ogcitlation depends on

n and ), the scaling ¢ also depends on n and A . A simple
criterion for the appropriate scaling is obtained ag follows:
he region of ogcillation lor the n-th eigenfunction o the
gquartic anharmonic oscillabtor (for sufficientl, large n)
N(En/l)l/4. In the WKB approximation En(l) = Cll/i(n + %)4/5.
Therefore the region of oscillation Wl"l/6(n.+ %)1/3. The
exact n-th eigenfunction has n zeros in the region of ogcil~
lation. Hence setting the region of oscillation for the

n-th eigenfunction equal to the width of the n-th basis

function (VV(n/a)) we obtain
aln,A) v (n + %)1/3 Al/j.

his puts the span of the firct n (or a number proportional
to n) basis functions in the region of oscillation of the
n-th eisenfunction for all n and A, just as required for an
effective expansion. In view of the WKB estimate and the
large X aggumption implicit in the derivation of the above
scaling formula, it is not expected to be good when n and

or A is small., However, for A =+ 0 or for small n the



15

scaling must approach the value 1/2 appropriate for the
harmonic osgcillator. Hence the gcaling formule for all

regines of (n,A) is

T

s(nd) = 4 (n+ 35 (2.2)

The effect of using an approvriately scaled basis is remarkable.’

It is now possible to compute the eigenvalues in any regime

of (n,)) with arbitrarily hiph accuracy.

It is to be noted that the different regimes of (n,A)
are distinguished according to the above gcaling formula.

Lhus
(n + %)l/j Al/p << % ig the near harmonic regime,

(n + %)1/3 A3 s % is the pure guartic regime,

(n + %)1/3 Z1/3 .

Nt

ig the boundary layer between
the above two regimes.

The value of the combination (n f‘%)l is seen to determine
the repime to which an eigenvalue belongs. The importance of
the above combination of n and A in determining the various
regimes was algo recognised by Hioe et al. (1976) on egsen—
tially empirical grounds. It is in thisg work that the
combination (n + %)i' is shown to determine the characteristic
scaling in a given regime of (n,A) through the relation (2.2).

his observation leads to the construction of a scale adapted
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basis and malkes possible a unifo.m treatment of the problem

in all regimes of (n,\).

IT.2 Method
The method applicd Lfox obtaining the eigenvalues is
described in this section. ‘he Schrddinger eguation for the

quartic anharmonic oscillator is

3° 2 4 ,
[« == + "+ "] v(x2) = BQ) vz, (2.3)
dx
where the eigenfunctions ¥ &Ayk) + 0 2g ¥+ +w. The expan-

sion (2.1) on substitution into the above equation yiclds the

following 4-term linear recurrence relation, connecting the

-alternate expansion coefficients {ang,

) 2 | — — -
(m+1) (m+2) &, , + (E-dom-2c) o + (4a°-1) a  , ~ra  , =0

m+2
(2:4)

e above recurrence relation may be rewritten in the follow-

+ d a_ + d da

2 a
m+2 m,m m N, m-2 m-—2 = - m,m=] m-4

wherc

-~ 4am-20)

U,m = (e (mr2) ’ m,m~2 (h+i§fﬁ%§7

a (2.5)

A
mym~4 ~  (m+l) (m+2) °
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Since the Hamiltonian for the system has even symmetry, the
solutions of the Schrddingei equation are either even or

od¢ functions of x. The even anc od¢ pearity <olutions are
obtained respectively by assirning the initial conditions
(i) a,=1, a;=0 (1i) 2p=0, a;=1l. The recursion(2.5) may be
viewed as an infinite set of linear homogeneous equations

in the unknowns {am}. For whe self congistency the infinite
determinant A(E) formed from the coefiicients of {am} must

vanish. It gives

dOO 1 O ..
dZO d22 1 0 .o
A(E)= d4_u d42 d44 1 0 .. =0,(2.
O d62 d64 d66 l O ¢ o
°* 0 dm,m~4 dm,muZ n,m 1 O .

the roots of tiie above transcendental equation are the eigen-
values. This mode of writing the characteristic equation in
the form of an infinite determinans is well known from the
eigenvalue problem associated with Hill's equation (Whittaker
and Vatson 1927). Denoting the truncated determinant formed
by omitting all rows and columns beyond the element ¢

m,m
as Am+2(E)’ it may be noted that Em(E) is a polynomial in E
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of degree m/2 when m is even and (m-1)/2 when m is odd. The
zeros of A (E), Am&Z(E)’ ... are numerically stable for
largce m provicded the scaling o ic appropriate., The determi-
nant Am(E) for m+e defines A(E). Hence the problem of
obtaining the eigenvalues is reduced to finding the zeros

of A_(E) for sufficiently large m. The zeros of Ap(E) are
obtained numerically by Newton's method which requires an

initial estimate of the required zero say E as well

initial

as the values of B (E) and A (E) (=2A /3E) at b = B itia1-

“o evaluate ﬁm(E) we note that the truncated determinants

satiefy the following 4-term linear recurrence relation

AnﬁQ(E) - dm,m(E) Am(E) * dmym~—2 Aan(E) - dm,m—4 Am«4(E) =0,

(2.7)

‘obtained by expanding the determinant Am+2(E)° The value of

the determinants Am(E) mey thus be computed succeusively upto

any order in terms of Ao(or Al) using (2.7). The recurrence

relation (2.7) on differentismtion wich wespect to I yields

A o(E) - A n ?m(E) = a, (B) A, L(B) + S 1o Ay _o(E)
= Ay noa b g(B) = 0, (2.8)

from which A’(E) may be computed upto any order recursively.
The recursions (2.7) and (2.8) are numerically stable. The
initial estimates for the eigenvalues required in the

Newton's method may be obtained for low n by evaluating a
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sufficiently lerge order CGeterminant AMKB) Trom the recur-
sion (2.7) at various B neints. Opposite sigmn of AM<E)

for two neishbouring B values indicate +that an eigenvalue
ig crossec which provides sufficiently accurate estimate for
the Newton'g metnod. TFor high n (and not too low A) the
"corresgponding VKB opproximeviong of the elgenvalues are good
initial estimates. ‘he procedure for obtaining initial
estimetes in the (hisgh n, low X) region of the 'boundary

layer' is described in Appendix A,

The dctual computation of the eigenvalues may now be
performed in the following manner. An initial estimate
(m = Einitial) is fed into ‘the recursions (2.7) and (2.8)
containing the appropriate value for a. The recursionsSare
then continued on a computer until the corrections, given by
the Newton's formula

SB(m) = =-{ A (E)/A (E)} B=E, . ci01’ (2.9)

stabilize +to a prescribed extent (see Wilkinson 1965). The
corrected value for E ig then fed bock in the second step
as the initial value. This is continued till the required
accuracy in the computed eigenvalues is reached. Due to
the quadratic_convergence of Newton's method it is possible
to refine a rather crude initial estimate for an eigenvalue
(say, within a few percent) to a 15 Tigure accuracy in 4 ox

5 steps for all eigenvalues. Some typical examples to
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elucidate this are given in Table (II.lf?— In principle,

the meothod can be carried vo an arbilitrary high accuracy.

The accuracy of the computation is limited only by the preci-
sion of the arithmevic used (16 sinificant figures in

IBM 7044).

IT1.3 Zigenvalues

Very accurate eigenvalues oL the quartic anharmonic
ogscillator and the associated problem of the pure gquartic
oscillator (I = p2 + 1X4,A > 0) have been oblbained ucing the
method described in the previous section and the scaling

formula

alnp) = 3+ (1.2 vo 1.4) (o + H723. (2.10)

The constant within the bracket (1.2 to 1.4) has been sct
cmpirically by finding the values of the scaling a« for which
the compubed eigenvalues gstobilize the earliest. The constant
(1.2 to 1.4) is found to worlk adﬁirably in the c¢ntire range

of (n,A). The calculation of the eigenvalues for the pure
guartic oscillator is similar to that done for the quartic
anharmonic ogcillator., The oﬁly ¢ifference is in the value

of &

T, me-2
oscillator case is equal %o (4a2/(m+1)(m+2)), The computations

in equations (2.5)t0(2.8), which in the pure gquartic

were done on IBM ‘7044 computer using double precision arith-

metic (16 digits mantissa). The eigenvalues were evaluated to

¥ Tables referred to in any chapter arc given at the end of
that chapter.
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16 significant figures and then rounded off to 15 figures for

the “ables.

The eigenvalues of the guartic anhermonic and the pure
guartic oscillator for various values of (n,A) covering all
regimes are listed in Tablee (II.2 to II.5)., In lfable (II.2)
we compare our results of Eﬁ(l=l) for n=0, 1¢, 100, 1000 and
10000 with the corresponding results of various earlier
calculations. In Table (II.3) the first 50 eigenvalues of the
guartic anharmonic and the pure quartic oscillators are given
for A=1l. The eigenvalues for any other value of X in the case
of pure quartic oscillator can be obtained from the corres-

ponding values for A =1 through the exact scaling relation E_(})

= Al/BEn(l). For the quartic anharmonic oscillator édifferent
eigenvalues for various values of X between .00001 and 40000
vere computed, and are presented in the Table (II.4). It
includes the eigenvalues for the (high n, low A) region of

the 'boundary layer'. The computation of eigenvalues in this
region of the boundary layer is found to be the most difficult
in the earlier literature. None of the approximation formulae
(1.6a,b,c) constructed by Hiog et al. (1975) are adequate for
this (high n, low A) recgion. In the present work the cigen-
values in this region (e.g. eigenvalues corresponding to
n=100, A =10"% and n=1000, A=10"7 in Table (II.4)) are obbtained

by the same technigue and with the same accuracy as any other,
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highlighting the scope of computations with an appropriately
scaled basis. In Table (II.5) we focuge on the regimes of
extrene values of (n,A). Hioe et al. (1975, 1976) give
different formulations of the cigenvalue pronlem in each of
hese regimes which cannot bc extended into other regimes

because of the boundary layer in betwecn. In contrast, ve

have obtained eigcnvaluces in cach of these regimes by the

same formulation and with the same accuracy.

I1.4 Stability of Zeros of Am(E)

P

The recursive evaluation of the determinants Am(E) and
the stability of their zeros will now be considered in some
detail. It may be noted that the recursion (2.7) is obtain-
able from the recursion (2.5) by replacing an Withiﬁm and
changing the sign of every alternate term. Thin prescription
is valid when the coefficient of the hirhest orcer term in
the {a_} recursion is set unity (by properly dividing, if

necessary). ‘Then

Am = ("l)m/z am s m= 0,2,4,...,

(2.11)

by

il

(_1)(m~l)/23m9 n=1,%,5,... .

In the case when the coefficient of the highest order term

ig not unity, the {am} recursion is

+
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highlighting the scope of computations with an appropriately
scaled basis. In "able (II.5) we focus on the regimes of
cxtreme values of (n,A). Hioe et al. (1975, 1976) give
different formulations of the cigemvalue proolem in each of
these regimes which cannot be extended into other regimes

becausc of the boundary layer in betwecn. In contrast, we

have obtained eigenvalues in cach of these regimes by the

same formulation and with the same accuracy.

IT.4 $Stability of Zeros of Am(E)

The recursive evaluation of the determinants Am(E) and
the stability of their zeros will now be considered in sone
detail. It may be noted that the recursion (2.7) is obtain-
able from the recursion (2.5) by replacing a, withuﬁm and
changing the sign of every alternate term. Thin prescription
is valid when the coefficient of the hirhest orcer term in
the {am} recursion ig set unity (by properly dividing, if

necessary). ‘hen

Am = (‘""l)m/z amy m= 0,2;4,...,

(2.11)

Am = (ml)(mu:L)/Zam, n=l,%;55¢0.

In the case when the coefficient of the highest order term
is not unity, the {a_ } recursion is

-
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a + & i
dm a_ + &

s I m,m-2am—2 +C

m,m+2 am+2 m’mulg_am-q_ = 0. (2‘12)

e corresponding infinite determinant formed in thies case

13

Aoy gy O .
dog oz dpg  © -
Yo Y2 Y4 Y4 O -
) 0 d62 d54 d65 d68 0 e e
AE)= v (2.13)

° e e oo & a ® o * o DR ¢ o

1 ¢ a - <
mek4 m,m—2 M,m m,m-2

L) . o ¢ 0 o o o * o ® o

The truncated determinants Km+2(E) formed by omitting all

rowis and colwrns beyond the element dm . in A(E) may be
9

0 v
eupanded in terms of the truncaved determinents of Jlower j

{
i

orders, It provides the following 4~term recurrence relation

|
Iv
A ) -~ A (@ . A B £
B2 ( %) dm,m Am(“) * C‘m--.2,Indm,,lrw2 Am-—2(3") g
[
|

- dm~4,m»2dm_2,mamﬂm4 Anh4<E) =y . (2.14)

The determinants {Km(E)} are related to {Am(E)} by

BaB) = dp oo Yneg,me2 o Q02 Bp(E), m=0,2,4,.. ' (2.15)
{ T _— n — i
Am\F-‘> — dm“'Z’m dm—4’m“2 € o o d13 Am(E) 9 m—"—L?j’S"" .

‘W‘
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The asymptotic behaviour of the solution of the

Schrddinger equation (2.3)~ exn (iIXIB/B). It reguires
a_../a N /m2 m > @ o (2.16)
m+2 ]l’l“4 H 9 hd

in the geries solution (2.1). [t follorrg immcdiately from
the relation (2.11) that for the determinantc {Aﬁgit is

required that

Am+2/Am—4 N x/m2 s m > ® | (2.17)

Ve obgerve during the recursive evaluation of the value of
Am+2(E) that for sgufficiently large m the second and third

terms in the recursion (2.7) become order of magnitudes

grmaller than the last term and the asymptotic dependence
(2.17) is satisfied. The asymptotic relation (2.17) implies
d sequence of decreasing determinants beyond a sufficiently ;
large m. This zeroing for large m must be igolated from the %
determination of the eigenvalues which are the zeros of A(E) E
for values of E. It is possible to achieve this quite 5
sinply by redefining the determinants AmﬂE) after muLtiplyingE
them with a large nuinber whenever, while applying Newton's |
wethod, the recursively computed determinants become too
small in magnitude. 'this renormalization amounts to starting
the recursion with a higher value of the arbitrary constant

AO (or A More generally, other recursively connected

l)°
sequences of determinants {Eﬁ(E)} mey be defined such that
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the zeros of Zm(E) and Am(E) are comron butb Em(E) may be
~iven any desired asympbtotic behaviour for large m. Yhis
ig done by multinlying the recursion (2.5) by e function of
n say f(m). The corresponding infinite determinant A(B)

and its various oirder truncations are related to the respec-

tive cquantities for A(B) by the relation

*

f(m-2) f(mw-4) ... £ (v or 1) Am(E), (2.18)

il

A (E)

where the i1hs contains £(0) (or £(1)) for che even (or odd)

einenvalues. Clearly Em(E) can be given any asymptotic
behaviour for lorge m by properly chooging the function f(m).
tince f(m) is independent of T by definition, the zeros of
Em(E) and Am(E) are common and they arec egqually suited for the

computation of the eigenvalues. ‘fhe ‘renormalization’
suggested above is a specialk case of this multiplication in
which all rows are lcft intact except one which ig multi-

piied by a large number.

To sce the stability of the zeros of Am(E) ag m+>

e first consider the same problem for the harmonic oscil-

lator (H = p2+X2) whicl: i exactly soluble.

EX

In the case of

the harmonic ogcillator the zeros orf the characteristic

polyaomial Am(E) are recal and the ratio of successive

polynomials is

bi2(B) (omi - 3

R S
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The zeros of m+2( E) consigt of all zeros of Am(E) plus a
zero at E = 2m+1l. Thuc the eigenvalues resuliing from the
golution of Am(E)zO are reproduced exactvly Ly the gsolutions
ox Am+2(E)=O for all m. This is characteristic of an exactly
go.luble problem. ror the uvuartic anharmonic or Lhe pure
cuartic oscillator the zerog of succesuive order polynomials

-

are different. lor a given I and sufficientl: lorze m,

however,
A B
m—!—z.( )'\l - ...2.‘.. Iu'* o o] °
A (% 2 7
-4 E) m

MMile implies that the largest order terwm in the ratio of
m+2(E)/A (E) is independent of B for m=+= . Me guccessive
polynomials as a function of E therefore dififer by a multi-
plicative constant (depending upon m) for large m. Hence,

b ~ - = 1 3 ¢ P

he zeros of Am(E) stabilize for largze m. The above dlscu331on

on stability follous Banerjee et al. (to be published).

I1.5 Checks for the Ejicenvilues

-

The confidence in the accu:acy or the computed eigen-—

values is cerived from the 1c¢llowing cliecko:

(1) Computations were done with geveral different initial
estimates for each eigenvalue. Ihe intermediate numbers
involved in the computation are dilferent for different
initial estimates but the final results for cthe eigenvalues

remain the same in all cases.
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(ii) The eigenvalues were computed using several values of
the sealing ¢ in the range given by eqn. (2.10). Its effect

is that the stabilization of axn initicl estimate TFor an

R
0]
L]
0]
et
I3
L]
o]
4
)
d—

eigenvalue to lo Figureg occuwrs ot slisntly CGiff

&

in recursions (2.7) and (2.2). Each -n{x) obtained in this

nork was thus checked and conlirwmed by using O or 4 different

values of c.
(iii) “hree separate computotions using an increasing, a
decreasing and a nearly flav sequence of determinants (see
section II.4) yielded the same values for Er(k).

L
fiv) pufficiently large order determinant AM containing the
~ppropriate scaling is evaluated for two neighbouring velues
of E. Opposite sigms of AM indicates that an eisenvalue is
crossed. The computed eigenvalues are thus tested and in

the process arc upper and lower bounded in the last signi-

ficant figure.

IT1.6 BEBigenfunctions

When E is set equal to a computed eigenmvalue in
recursion (2.5) the resulting coefficients {am(E)} provide
a very convenient representation for the corresponding
eigenrunction through the expansion (2.1). The following
properties of the solutioms of the Schrddinger equation

W(xsE) are important to note in this connection (Titchmarsh

1961):
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(i) The eigenfunction associated witlh the n-th eigenvalue
wn(X;E? has n zeros in the classical renion and wn(x§ﬂn)+ 0
as well as wg(x;Ew)~+O A8 X 4w,

(ii) Tor E not exmmctly egual to wn eisenvalus, ¥ (x3;E) can

have at most one zero in she nonclassical rerion oun both

nicdes ol tue axin and as X *4e it goes either 10 +w Or -e,

(iii) UYhe blow up of P(x3E) starts in the nonclassical region

and saifts to larger |x| as E aporoaches an eigenvalue.

5 ) =
..Ll; k)l(gl’l

[

(iv) As B crosses an eigeunvalue, ¥ (x30) chanues
of bplow up in the nonclasgaical region and tendsg to infinity
vit'. opposite sig

he expansion coefficients {am(E)} are evaluated
recursively from (2.5) for various compubted eigenvalues.
It ig obgerved that the sign of {am}stabilizes after a
certain sufficiently large index either To pluc or minus
(iem wiich implies that the computed P(x,E) » +o Or ~w as

X »+w However, this large |x| behaviour doec not affect

the computation of the accurate eigenfunctions significantly.

Since the eigenvelues used are accurate to 15 gimmificant

figures, the computed eizenfunctions reach extremely small
values in the nonclassical region before the blow up starts.
the part of the computed eigenfunctions where the blow up

occurs for large |x| may therefore be replaced by zero

without losing much information.

e :
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o test how well thu computed eigenfunctions satisfy
the Schrddinger ecuation we compare Tthe Gwo gides of
p(x) /9(x) = B at verious points x. For the first ten eigen-
funchiong which we have computed for X = 1 the test equality
i~ satisried to 1,14 sinnificent firures Iror x=0 ©to points
yvell ousside the clasnical region. For example, in the case
of tlie 10th cigenfunction of the quartic anharmonic oscilla~
tor with A=l, the test equality MY O/¢10 = E.. is satiesfied
to at least 1% sisnificant fipures in the entire classical
resion (x < 3101/4). At a point x * 1.5 E 3/4 the tesv
equality i still satisfied ©o 10 significant fipures, where
the value of the computed eigenfunction wlo (x = 1.5 Ejé/4)
A0 L(10m16) relative to WlO(X=O)=l, ihe accuracy of the
computed eigenfurctions are also checked by evaluating then
vor two neighbouring values of E which upper and lower bound
the eigenvalues in the 15th significant figure. Although,
the sign of the expansion coefficients {am} svabilizes to
all plus or 211 minus beyond a sufficiently high index m=M,
the difference in the corresponding computed values of (x3E)
for these neighbourings values of B is Tound to be less than
0(10"15) for 211 |x| < x,, vwhere x, is the digtance from the
origin to the point in the nonclassical region at which
W x3B) begins to increase in macnitude. Satisfying the
virial theorem by the computed eigenfunctions was used in

the earlier literature (e.g. Chan and Stelman 1963) to test 4
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accuracy. Lowever, the fulfilment of the virial theorem is

@ necessery but aot sufficient recuirement (ILowdin 1859).

The norm ol the computed eigenfunction is,

n) T ol —2axs
, | X e éx , (2.19)

+oo >
flo (=) I7 ax = §
00 m
where the ranpge of integration is truncted a% Xy - the point
in the nonclassical region at which the compuied eigenfunction
wn(x) beging bto increase in wmagnitude. ‘The value of wn(x) is
sufficiently small for [x|> x, as discussed above and the
contribution to the normalization from the rest of configura-
3
tion space is estimated to be <O(10 ¢6). e integrals in
eqr. (2.19) are obtained recursively starting from the
1 nﬁvz
incomplete Gaussian integral [ ™™ dx (see Lppendix B).
0
“he plots of some normalized computed eigenfunctions are

shovn in Fig. (II.l).?E

II.7 PFeatures of the Method

In this section some TFfeatures of the method are seen
in comparison with the other methods used for this eigenvalue

problem.

(i) It may be noted that nc integration or diagonalization
ig necessary in this method which makes it attractive for

the eigenvalue problems of the linear operators.

¥ Dhe vertical lines in the figure correspond to the classi~

cal turning points.
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(11) In perturbetion theory with A ag the small parameter,
this problem belongss to the singulor periurbation class.

he uniform appolicability of this method for aliA underlines

ite nonperturvacive character,

(i1ii) 1In view of the Section IT.1 an expansion for the eigen-
functions like (2.l) with a = constant way be called as a
"fixed scale' expension., »uch an expengsion iz suitable only
in a emall re;ine of values of (n,\) viere the scale happens
to nc cloge to the appropriate value and it Mecores unfavour-

able in the other regimes of (n,A). 'The variational and

mogt o the numerical methods applied esarliier use the expansion

v

L (34 = X /2y a X (2.20)
m=

0

in all regimes of (n,A). This expansicn has a fixed scale

=

¢ =

ASH ]

and ig suitablc only in the 'near harmonic'’ regime. ‘

- , . N
It ig¢ therefore not surprising that for hicher n or A (niA>> é)g
the cigenvalues could not be accurately calculated in the

above worlks,

(iv) ‘he need for introducing a scaled basis was also

re~lised by Reid (1970) who uged the linear variation method
for the pure cuartic oscillator eigenvaluec proiolem° However,
in a variational framework the usc of a scaled basis becomes
intractably laborious for the following rcasons. In a var-

iational computation the Ffirst n (say) eigenvalues are
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obtained together. Since the appropriate scaling is dif-
ferent for different n and A a single ccalinr is not suitable
for the computation of all n eigenvalucs. A compromise
sscaling must therefore be used. Bubt as n increases this
compromise scaling becomes unfavourable for more and more
eigenvalues. The wayout ig to compute eech cigenvalue
separately using an appropriasely scaled get of basis func-
tiong. whis is intractably laborious in a variational scheme.
In our method the use of an eppropriately scaled basis merely
reguives thét a proper value of the scaling o obtained from
formula (2.10) be used in recursions (2.5), (2.7) ard (2.8).
Since each eigenvalue is computed individually there are no

carry Over errors.

(v) Computation with a larger basis is very simply done in
this method by continuing the recu sioms (2.5), (2.7) and

Z2.8) for increasing m. In contrast a variational calculation
1ith o larger bagis requires intcgration and the subscquent
diagonalization of a large natrix whicl. beyond a gize is
intractable. For instance, the 10000th eigenvalue of the
quartic anharmonic ogcillator stabilizes to a 15 figure
accuracy (in 3 minutes on IBL 7044) at a point in the recur-—
siong which corregsponds to the use of nearly 17500 terms in

ne expansion (2.1). A variational calculation of this size

is inconceivable.
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(vi) The method of infinite determinant Ffor the eigenvalue
problems (Whittaker and latson 1927) was used by kKernmer (1C51)
and Biswas et al. (1973). ihese attenmpts had a limited
success. Jthe primery reason for this is the use of a Tixed
scalefexpansion asg discussed above. In the typical case of
the quartic anharmonic oscillator (Biswas et al. 1973), only

I

the lowest 8 cigenvealues could be obtained (using the expan-—
2

gion in the basgis functions {Xm e ¥ /2}), until the nuwerical

crrors become too severe. THosides, in this -jork, thc pro-
cedure used for cvaluating the eigenv-.lues congicts of
cxpanding the characteristic polynomials in powers of I and
then finding its zeros. This is numerically inadvisable

(see Trox and Mayers 1968) because the uncertainties in the
coefficients of the polynomials arc hichly correlated and

the cxpanded polynonmials with rounded coecfficicents arc badly
conditioncd with respect to its zeros. Bigwas et al. also
carried out numerical invegtigations on the 'amount of
normalization and the extent of orthogonality' ol the
computed eigenfunctions in order to test their correctnescs.
the overlap integrals required were evaluated by integration
over X from —wo t0 +w. We have scen in Section II.6 that

any solution of the Schrbdinger cquation $(X;E) + 4w or —e

as x » t+o, unless B is exactly equal to an eizgenvalue.

Even a truncated expansion (truncated at a certain high

index) gives a hump in the nonclassical region in thc computed:

§
!
|
i
.
!
:
§
r
f
'
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eigenfunction, where the actual ciginfunction decays monoto-
nically. The overlap integrals evaluated by integroting
over infinite limits arc therefore inaccurate and the test

of the eigenfunctions uscd by Biswa:s ct al. is inconclusive.
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PABLE (II.2) : Comparison of our Results for E

(A= 1) with the
Results of Iarlier Calculations,

P e e

e o e

Quantun E, (X =1) for the Quartic Anharmonic Oscillator
nuber e e
n This vork Parlier works

V392 55 bk
1-387 187 78 (a)

0 1.392 351 641 5%C 29 1.392 351 641 550 29 (b)
' 1.392 350 653 57¢ 1 (c)
10 5%.449 102 139 665 3 53.448 404 6 (d)
100 1 035.544 183 138 91 _ 1 ©35.544 04 (4)
1000 21 932.768% 710 666 9 21 9%32.78% 6 (4)
LO0VO 471 103.777 790 809 A71 103.778 ()
E, (X = 1) for the Pure Quartic Oscillator
This work Barlier works
0 1.060 362 000 4534 18 1.060 362 090 48 (e)
) 50.25G6 254 516 7 (e)
10 50,256 254 516 682 9
50.256 254 0 (4)
1.00 1 020.989 992 105 37 1 020.989 99 (4)
1000 21 865.262 118 137 7 21 865.262 1 (4d)
10000 470 790.294 427 023 470 790.29% (4a)
(a) Hioe and Montroll (1575) - Egn. (III.9).
(b) Biswas et al. (1973).
(c) Graffi et al. (1969). '
(d) Hioe and Montroll (1975) - sophisticated VKB values.
(e) Reid (1970).
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TABLE (II.3) : Eigenvalues of the Pure Quartic Oscillator
(E = p2 + kx4) and the Quartic Anharmonic

Oscillatoxr (H = p2 box ot XX4) for A= 1.

WG W W T e s R Mok ML T S O 6 e SRS AR RA VTHER W sar G 6w e

Quantun Pure Quartic Oscillator Quartic Anharmonic Oscil-
number Eigenvalues lator Eigenvalucs

P ——1 oy —

L T VL e N I MR S PN RTINS R TN LAY POt S Ul WL B e B Mt S MIS RSN, TRl IO M SYaihal TS

0 1.060 362 060 484 18 1.592 351 641 530 29
1 5.799 673 029 801 40 4.643 8l2 704 212 08
2 8.

T.455 697 937 S86 74 55 049 S57 759 31

wul

O

3 11,644 745 511 378 2 15.156 803 898 04¢ 9
4 16.2561 826 018 850 2 18.057 557 436 303 3
5 21.2%8 372 918 2% 0O 23,297 441 451 225 2
) 26.528 471 183 682 5 28.835 338 459 504 2
7 32.098 597 710 968 3 34,640 848 321 111 3
8 37.92% 001 027 U34 O 40.690 86 082 106 4
9 4%3.981 158 097 289 7 46.965 009 505 675 5
1.0 50.256 254 516 682 9 55.449 102 139 665 3
11 56.734 214 055 173 0 60.129 522 959 157 8
12 63.403 046 986 718 9 66.995 030 001 247 2
13 70.252 394 628 616 6 74.035 874 359 102 5
14 77.27% 200 481 984 .0 81.243 505 050 767 2
15 84.457 466 274 942 O 88.610 348 800 799 2
16 © 91.798 066 808 991 2 96.129 642 045 2%4 1
17 99.288 606 660 493 3 103,795 300 322 273

18 106.923 307 381 733 111.601 815 045 173
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Pable (II.3) (..Contd.)

e o s e AN A

I L i T e, sz

Qu..ntum Pure Quartic Oscillator Quartic Anharmonic Uscil-—
nuﬁbor Eigenvalues lator Bigenvalues
19 114.696 S17 384 G85 119.544 170 733 050
20 122,604 639 000 999 127.617 777 7S5 355
21 130,642 068 748 630 135.8618 417 325 610
22 138.805 147 911 395 144.142 1S5 296 398
23 147,090 121 257 604 152.585 504 205 574
24 155.493 502 268 682 161.144 990 694 513
25 164.012 043 622 865 169.817 528 001 595
26 172.642 711 962 845 178.600 192 366 876
27 181.382 666 185 768 187.490 242 692 95C
23 190.229 238 652 463 196.485 102 910 221
29 199.179 918 833 T47 205.582 46 604 423
-0 208,232 539 005 144 214.77% 683 549 177
51 217.384 261 674 107 224.074 947 352 60V
>2 226.633 568 481 138 233.466 087 479 375
35 2%5.978 250 261 696 242.551 154 S51 147
34 245.416 398 T91L 936 252.528 299 061 4953
35 254.946 197 970 798 262.195 757 468 520
56 264.565 917 814 499 | 271..951 850 050 007
37 274.273 907 658 941 281.794 972 923 820

38 284,068 590 581 401 291.72% 593 051 013
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TABLE (II.3) (...Contd.)

pra—

P Yo e e e e

Quantum number Purc Quartic Oscillator Quartic Anharmonic

_ _P' Eirsenvalues Oscillctor Eigenvalues
39 295.948 458 266 L06 301,726 2435 551 187
40 307,912 066 348 384 310,831 518 269 701
41 212.958 030 183 978 522.008 069 T44 845
42 224,085 020 992 133 332,264 603 530 091
43 334,291 762 534 482 342.599 875 832 547
&y 344.577 026 891 585 355.012 690 233 T3V
45 354.939 633 506 95 367,501 394 863 479
4.6 365.%78 444 467 063 374.066 379 800 C92
a7 375.892 363 004 9332 384.705 074 675 T21
48 386.480 330 9806 517 395.416 946 465 263
49 397,141 326 T80 674 106.200 997 442 128

50 407.874 363 284 438 417.056 263 284 848

A AL W W 0 D o U s i 80 o AL ek e e e - -

S
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WABLE (1I.5) s Eigenvalues of the Quartic Anharmonic Oscillator
. 2 2 A . . ;
(I = p% + x° + Ax") in kegimes ol Extreme Values

'\\?‘ 0. 0GuL

40000
0o
¢ 1.000 074 986 880 20 36,27« 458 133 736 8
(near harmonic regzime) (nezr quertic regime)
1000, 2 1ni.242 RA5 272 21 747 785,21 502 834

(oundary lover) (near cuartic/VXB regime)
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Fig. II-1 Quartic Anharmonic Oscillator

for
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CHAPTE: IIT

Ty GENERAL ANIIARMONIC OSCILILAL

ITI 1 Introduction

The cicenvalue problem of the peneral anharmonic oscil.:

-

Lator Gescaeibed vy the Hemilivonian

; (3.1)

LL

viiere A>0, n =54, ... and p = - 1 s

is considered in
thi:s chapter. Using the .caliap arguments siuilar to those
ir Clopter I, it follows that the eigenvalyes of H(k,A)

2 2 21 . 2 .. . ¢
= % + kx" + Ax"Y are given by En(k,k) =k L (3, A ), where

- k"3/21. It ensures that the eigenvalue problem of the
anhurmonic oncillator ¥(ik,)) can be completely described in
beomy of tlhic reduced Hamiltonian I(1,A) .

A stroishtforward perturbative solusion of this problem
sune ingo difficulties. Whe perturbation expansion for the
cipenvilues in powers of X is not convergent but asymptotic
(imon 1.970). ‘e coefficients in the perturbation series
~row verv fnst and the congtruction of wi..r,ious Padé approxima-

nts bocowe extremely involved. he numericel resulits of

Craffi et al. (1971) for the octic anharmonic oscillator
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(p=4 in (3.1)) suggest that Padé approximants do not converge
to the exact eigenvalue. However, mixecd Dore.~Padé method
vere utilized to obtein a few eigenvalues. Non-perturbative
calculations have been relatively more successful. DBiswas
et al. (1973) extended %1 : "Hill dxterminant’ method, used

for vhe quartic anharmonic ogcillator nroblem, for this case.

no

they uwed the basic functions {Xme"X /2} for <She expansion of
the eigenvalues for the sextic and thie octic anharmonic
gscillabsors (p=3% a2nd 4 respectively in (3.1)) for values
cl a in the range U< X € 100 for n=0 and U < A € 10 for n=2.
otrevel, the accuracy of the computed eigenvalues in thelr
vork reduces significantly as one goes from the guartic to
the sextic or the octic anharmonic oscillator, besides, the
evaluation ol the eipenvalues gets confincd to smaller regime
of (n,x) values. Lakshmanan and Prabhakaran (1972) obtained

. 2p .
comiclnesically an asymptotic expression for En(“L)(l) in the
p=3 case. ‘wruons (1875) used Weyl-quantization prescription
to study the sextic anharmonic osgcillator eigenv: lues but no
new recults were obtained. For sufficiently large n, the
WKB approximation method has been used to ovtain approximate

eigenvalues.

The most recent and extensive worl on the ;eneral anharmonic

oscillator eigenvalue probler it due to Hioe, Macliillen

and Montroll (1976). They distinguished two limiting regilmes

t
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ol values of (n,\) for the eigenvalues En(29>(x) enalogous
to the similar distinction mnde for the ¢uartic anharmonic
oscillator cigenvalues., In one recime the eneruy eigenvalues
¢iffe. slirhtly frow the harmonic ogseillator levels (the
mear hormonic' regime); in the other they differ slightly
Trom the purc 2p-ic oscillator eigenvalues (the mear pure
aniwimonic' regime). e above two limiting resimes are
senurated by a regime called thie ‘boundary layer' in which
Ghie energy eigenvnlues are not 'nearl:r harmonic! or ‘nearly
pure Aanhormonic', Hioe et al. used different formulations
of the cigenvalue problem in various regimes and conriructed
cevernl simple formulae with different renges of wvalidity.
Uscing Bargnann represcentation, they developed numerical
aleorithms from which the energy cigenvalueeg in the small n
rocime may be computed., The alporithm is similar to that

daoveloped Toe ihe guartic anharmonic oncillator eigenvalue

)
probler. TFirst few cipenvalue: were thus computed to 5-6
gigmificant Tipurce for the sextic and the octic anharmonic
ouscillosors, for variousg volue of A. Lowever, the size of
the determinents, required lLox the computation of the eigen-
valves, increases rapidly vith p oo n, making the evaluation

ol highir cigenvalues laborious.

e sho'r in this chapter that the method described in

Chapter II may be extended to solve the general anharmonic
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oscillator eigenvalue problem and eigenvalues of arbitra-
rily high accuracy are obtainable in this case in all regimes

of (n,x) as for the quartic anharmonic oscillator proolem.

- s e o

III.2 ihe Appiopriate Scelina Formula

. . . . (2p )

'he cigenvalues Ln( t”)(}\) and the eigenfunctions
. (2u) -

) B/ (x32) of & ceneral ahnarmonic oscillator (H = p° +
i} +

2 2
x~ + Ax M) are the golutions of the Schrddinger equation:

S

2
d 2 2 20) ,
[~ Somp o+ x4 22" wn( M) = EH(Z‘”)(M v, P (=),

X

r2th the boundary condition ¢n(2“)(x;x) + 0 as T+ +w. ke

write eisenfunctions in the form
2 ©

21 -QX n
‘pn( l)(x;l) = e z D.m X (343)

m=0

ivhere ~ in the scaling constant. A formula for determining

the appropriese scaling a for any 1 ic ohtained along the

came lines ag for the quartic anharmonic oscillator (gection

\

IT.1). ‘'The exact n-th eipenfunction has n zeros in the
region of ogscillation which, for sufficiently large n, 1is

m(En(z“)/A)l/zu. In the WKB approximation
(20) L 2B
2 . Rl Ly ptd
E, A)= C2 (n + )

1 L
Hence, the region of oscillation VA (1] (n+%)r§;i3.

or an effective expansion the region of ogcillation muet
i >

CEN .

CEN,. ~ - Y
58469

[ YN XN P Tt ]
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include the span of rirst n (or a number proportional to n)
basgis functiong. The appropriate nceoling formula is thus
obscained b - seiving the rcgion of oscillation of the nth
eigenlunction equal to the width of the nth basis function
(Wa“l/z nl/z), which yields

b=l L
o(n,n) ~ (n + %) pd e

.

Mo ahove gscaling formule is not expected to be good when
n and/or ) i small, in view of the WKB approximation for
En(zu)(k) used in the derivation. However, for small n,
arnll A the scaling must approoch 1/2 — the appropriate
scaling Tor the harmonic ogcillator. Hence, the scaling

{ormula valid in alt regimes of (n,y\) and for any p is

pel L
a(n,2) = =+ (n+ %)“+1A_“+l (3.4)

fhe rollowing regimes may be distinguished according 1o the

nvove ueeling formulas

Bl L

(n + %)”+l AM+1 << % is the near harmonic regimc,
Rl e
(n + %)U+l RS % ig the pure anharmonic regime,

=k -

(n + %")p+l X;ﬁ

f

% is the boundary layer between
the above two regimes.
-] .
The value of the combination (n + %)p “ ) determines

the regime to which the eigenvalue En(zp)(x) belongs. It may



-
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be scen from above that the range of (n,A) values for the
'necr harmonic regime' dimnishes on increasing p. Ilence
the eigenvalues of general anharmonic ogcillators, obtained
from the methods which use o finite term expansion for thoe
e o . . . x/2
cigenfunciions in the harmonic oscillato basis {Xme }
deteriorate in accuracy on goins to oscillators of higher u.
rhe usc of basis, appropriately scaled according to the
regime, lcads to a uniform treatment of the anharmonic
gcillators eigenvalue problem for all u and in all regime

of (a ).

III.3 Method

The expansion (3.3) on substitution into the Schrddinger

cquation for the general anharmonic oscillator (3.2) yields
the following (p+2)~term linear recurrence relation among

the cxzpansion coefficicnts {amgz

2
(m+1) (mt+2) 8o + (E~4om~2a) ay + (4e *l)ammg ~-1a 0.

m~2u
(2.5)

'he even and odd parity solutions are obtained respectively

by assigning the initial conditions (i) ay=1l, a;=0

(ii) ao=o, a;=l. e divide the recursion (3.5) by (m+l){(m+2)

and rewrite it in the following notations

+ d a -+ d

a + d
m+2 m,m I m,m~2 m-2

a n,m-2p Sme~2p 5



where

a

-

a

= AB-dam-2aq)
m,m m+ 1 ) (

m+2

9

dm o M2

2
_ (4e”=1)
T Torl) (mt2) ?

()}
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.6)

m,m-2

A
(wi) (52) -

For sclf connistency the determinant

d, L O i
dog G2 1 v
0 4, 4, 1 O .

(D) ce e R TH N
T T - Moy F B

. ol2p . . 4
The cigenvalucs En( l)(A) are the roots of this transcendental
ccuation. To obtain the roots numerically, ve denote the
determinont fowmed by omittine all rors and columns beyond
a in i) as JAE).
m,m 1A (B) ¢ Am+a(u)

cxpanded into Cceborrdinants of lower o

The determinant (E) may Dbe

Am+2

Jers. It vields the fol-

lowing (p+2)-term rccurvence relatio. amons {Am(E)}:

Am+2(E) - dm,m(E) AHKE) * dm,m»Z Am~2(E)

-1 ~ ]
+(-1)" dy, m-2p Au~2u(E) = 0. (3.8)

Hence the values of the determinants Am+2(E) upto any order
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may be determincd successively in terms of Ay (or AT) with

the help of the above recursion. 'he corcesponding zeros

of Am(E), Am+2(E)"’°' stabilize to am eigcnvaluc for large

m provided tue sceling o is appropriate. The proccdurec

for the actual numerical cvaluation of +the cigenvalues 1is

the rame as i Gescribed in scetion (II.2). dhe Newbon's
method, which ins used for obtaining the roots of 4. (E)=0,
reguires the value of the derivative At (E) also. ‘'he deriva-
tiven A&(E) can aluo be cviluatced rccursively withh the

help of the recursion

f hl .
Z(L) - dm.m a (E> B dm,mﬁﬁ)Anﬁm> ' m m—2 Bm— Z(E)

J.‘ l'

A
0O
~

W (=T ' my
F(=1) dm,m»ﬂp Am~2p(h) =0, (

ebt ined by differentiating (J.8) with respcct to . The
reeursions (3%.8) and (3.9) arc coatinued on computer until
whe corvections for the required root of {Am(E)} for wsuffi-
ciently lorge m gtabilize to a prescribed cxtent. The
cigenvalues acourate to 15 sisnificant figurec may thus be
computcd in only 4 or 5 itcrotions starting from rather crude
initial cstinates. The inditial entimates for cipsenvaiues for
large n (and not too low 1) are obtained from the corres--

ponding WEKB approximation rormulae and for Lo n they arc

obtained by cvalw ting a sufficicntly large order determinant

Am(E) from recursion (3.8) at various E points



For obtaining eigenfunctions, = ic set equal to the

compused cigenvalues in ¢ .¢ recuwrsion (L.5) ond the cxpansion

cocfiicients {an(E)} arc cvaluated ruccessively “he

regulting coefficionts {am(E)} provide a convenient repro-

sentation lfor the corvegponding eigoiniunction thirour v the

cxpanrior. (L.2). The asymptotic behaviour of the golution
&

of the Schrddin; cu cquation (2.2) aexp (+]x] ud

requires

a_ /2 .
‘m+d/ m=21

1 o

{or ithe cocfficicnts in the geries solution (D.3). It is
se during the computation of {am(E)} that the abovc

asymptotic dependence is satisficd actually, wvhich cnsurcs

PR g

4 auercaving (in magnitude) sct of coefficients for suffi-
ciuvntly large m., It is now possible to obtain accurate

cigenvilucs and cigenfunctions fox the general anharmonic

cucillators for nny value (n,A).

TII.4 Bigenvalucs

Ve hove obtained the eigenvolucs of the soxtic

2, .2, 340 2

(1 =p° + x A >0) and the octic (Il = p~ + x° + Ax®

9

A > () anhormonic oscillators for various values of n

and ). ‘e eigenvalues arc computed wsing values of o in

the rando:

Jutl), which

)
NooA/nS, me e, (3.10)

b4
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1 .
a(n,A) =5 + (1.5 to 2.0) (n + %)1/2 11/4 , (for the
sextic anharmonic ogzcillator), (3.10a)
aln,r) = % + (2.5 to 3.0)(n + %)3/5 xl/B, (for the
octic anharmonic oscillator). (5.10b)

ue range of o given above works for any value of (n,A).
The eisenvelues, thuo computed, are presented in fables

(III.1) «r@ (III.2) for n = O, 1,

k4

2, .. 10, 100 and 1.0GO
and Lor aifferent values of A in the range .COCOT <A< 40000,
they are cvaluated to 16 figurces ond then arc roundced off

to L5 figures for the Wablcs. The Tableg (ITII.1) and (III.2)

ineluCe volues of En(zu)(

A) for the (high n, low x) recgion

0:. the boundary lover. The computation of the eigenvalucs

in thioc region ig found to be the most difficult in the

¢ licy literaturc., Further, the values of En(2“>(x) for

thhe sexbic und the octic anharmonic vscillators to this
ccenp oy din ol regines of (1,A) are rogonted Tiere for the |
Livas tine Mg exdseing wout extoeneive tables for En(zu)(x),
wo= %, 4, arc due to Mioc ¢t a”. (1676) who have prescnted
the vielucs of firet six eipgenvalucs to & aignificant fipures
for the coxtic anharmonic ogscillotor anc of first four eigen—
valucs to 5 gignificant figsurcs for the octic anharmonic
oncillator. fho possibility of treafing all higher order
genceral anharmonic oscillat cigenvalue problem by the same

ors
tochnicue for any valuc of (n,A) is thus cstablished in this

f
chapter. ‘f
|
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CEHAPIER IV

THE DOUBLE MIWINMUIY USCILLATUR

.

IV.1 Introduction

We congider in thic chapter the eisenvoluve problem oL
the double miniwum oscillator (d.m.o.) desc.ibed by the

Hamiltonian
T(ia) = p° ~x"+ Ax', aA> 0, (4.1)

e potential function of a d.m.0. LaS swo svumetric poten-

tis) wells sewarated by a barrier. A featule of its eigen-

a4

)

volue problem is the bunching of the lower eicenvalues in

)]

.

prirs for sutficiently large senaration between the two wells.

iho ¢.m.o. models some interesting phy: ical provleusg. The
vi o vtional spectra of sone rolecules possess two parallel
type nearly superimpoged bhandg, a phencmenon vhich way be
directly related o the eigzenvalue specitlull of the d.un.o0.
The commonly known example in vhis reparc ig the inversion
gpectra of the cmmonia molecule (oee Donison and Uhlenbeck
19%2). Desides, the potential functions of several hydrogen
bondcd solids are found 1O poOsECSs two minima in the region

avoilable for protonic novement (seec Synder and Lhers 1662,
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QaAarnoaes - o= - 3 = .
comorial and Hornig 1962). The most recent appearance of

Tl - ! 3 3 e 1 ! - .
CRLZ mocel is in the sportaneous syroetry biezking (Polvakov

1977) .

Ny POV el 2 oo . e \ .
The computetion of the splittins between the ei.cenvalues

forming pairs has beon the subject of corsicdcrable inserest,
the 3plittiug depends in gensial on the separation bebtween

tle two wells and¢ “he naturce of barrier between +them. The
d.m.o. with potential function V(x) = 3k (|x|- a)2 is cxactly
solvable (Merzbacher 1961) and an cxprcesion for the splitting
between the two lowest cigenvelues is AD Vv kZa exp {<ka
Lennison and Unlenbeck (1932) obtained the splithing iun the

WKB approximotion and then compared the KB values with the

)

exe et valuer for o d.m.0 -rith potential function forued by

Joining two cqual parabolac with a straight lin-~. The VKB

o
vilues for the splitting are found fairly accurate for large
sepnrations between the tro parabolae. It is intvercsting to

005 that the VKD approxim~tion i~ applied lLierc Ffor low n.

Mo ugelfulness o theose resulte is, however, limited

-

GO some

cxtent, as cthe potentinl functioas uned in these works are

-

non-avnalytic. Harnony (1971) tre.ted the ¢.m.o. problem

y -

viiv o hermonic oupcillator approximetion and 0

-
i

rtained zero-
order and fivet-order cxprcegsions for the splitting.
ihe perturbation cxpansion of the energy eigenvalues

ot the & m.o. described by (4.1) in power series of A is
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non--cenvergent (Siwmon 197C). Somorjai and Hornip (1962)

'

ovtained numerienlly o few enercy cigenvelucs (Go D=

si.nilicant firures) for the d.m.o. with Damiltonian

Hk,n) = P2 xx2 Ax4 {o.s five differcat paim of values

-l

of (lg,A). Ihe ¢ lculations were Aonc by exyandins the

4
£
5
O
C
'..I
O
5
w

cireniunceions in the harmonic ogeillator bLagis

Q' Glagonalizing the secular determinant formed. ‘e obtain,
in this chapter, accurate eigenvalucs and eigenfunctions of
(4.1) vuvsins the mcthof described in Chapter II. A VLB
crprecsion for the splittiny, is also obtained Tfor this
nrovlenm and the VKB values cre comparcd wvith the cories—
pondina uccurate volues for the gplittine Iov various values

ol .

Iv.2  Zigenvirlucs

e selrddinpger eqution for the d.m.o. (4.1) is

2 p I3
Dniw§--xedrkx4] v, (xp) = Eh(x)wuﬂxﬂ) . (4.2)
X
M ooicenfunctions are expanded as
_MONZOO il )
p(xn) = e zoamx ,, (4.3)
m=

vlich oa gubgstitubion into (4.2) yields the following d~term

reeurrence relation,
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a + & a t ) = )
2 dm,mqm * dm,m-«2 “m-2 dm,mn4 Tm-d T 0, (4.4)
where
4 - (LE~~.--__4-.<}@9:292. 3 _ o Aef + 1
m, 1 m+1) (n+2) v Spome2 T (mrl){me2) v
T S
m,mf4 (ot (me2y

Ihe method of computing thy cigenvalucs from a recursion of
the type (4.4) hoo been Aescribed in Chapter II. ‘herefore,
wwoelreavaluss of the d.ou.o. are obtainablc with uniform
fcensacy in all regimes of (n,A). Jhe characteristic
pwichin: of the cigenvalues in pairs occurs for small n

e for gufficiently large scparation betveen the two wellsy.
yinee the separation between the to wells ~V(L/A), the
regdon of intercst for the present problem is the (low n,
lot A) regime. For (high n, high A) rogime ©the cigenvalues
are noar purc quartic., Ve have therciore compubted the
cisenvalues in the (low n, low A ) regime and the results

are nrescented in Table (IV.1) ifor the firsh eipht eigon-
valucs for vilucs of X in the range C.01L< A < 0.20. ‘he
values of the scaling o uged in thesce computations lie
betircen 0.5 and 1..0.  The eigenvalucs prcgented in the

Joble (IV.1l) arc with respect to the bottom of the notential

wells at zero cnorgy and is related to L (A) by

ep(d), = ;Ll-; + B, A), (4.5)
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where 1/4) is the depth of the potential vell. The numbers
En(l) are pogitive definite and provide a direct look at

the variotion of the eigenvalues ith A . TFoxr x + (¢, the
seporation between the ti7o wells increaces and the probabi-
1lity of penetration throush the barrisr avproaches zero. The
eigenv..lues €5y and €op1s thercTore, beconc nearly doubly
deeenerate for swall n. For instance, €on and €541

(n = 0,1,2) are founc close to each other to at least 14
sirnificant figures tor ) =C.0l. rhe expansion of the poten-
tial Tunction of the d.m.o. about the minina of thc well
m?xg, for A + O3 thorefore the lower eirenvelues AV2(2n+1).

e pumerical results confirm this observation.

. 2 2 A& .
The eipenvalues of II{k,r) = p “kx“+)x " are obtainable

Trom bhe eigenvalues of II(1, A') using the scaling relation

= _ o t/2
.un(kg}\) = k Eﬂ(l9 l'):

where A' =

V.7 Tpo VKR Jorruls foF, Splitbing

Wie splitting between the pairs of lower eigenvalues of
a nymmetric d.m.o0. In the T{B appro-imation is given by
(Landav and lifshitz 1965)

Xy
J

exp [ - kX ax], (4.6)

UEB _ w
AT = 4

U

-1 1 1 -1 . .
where w ~ = 5 [~ p7~ dx and #xy, X, are the four turning
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points. The derivation of the above Fformuls assumce small
probability of penetration through the bar—ier. TFor the

G.m.o. described by (4.1) the tvrning points are ~iven by

(4.7)

4
i
&
N
}._l
o
~
™
=
\)f
}
—
!
+
P
~

o o 1 0 -0 .
vhere u = \f 4 - e 4 T8 1 o . OF
( Xen) 9 En I Ln’ g is the mean enerny of
ithe two eigenviluern forming a pair. The invesrols involved
in (4.6) may be crpressed in terms of the complete elliptic
integrals K(k) and B(k) of the first and the second kinds
roespectively (Gradshiteyn and Ryzhik 19065)

XY 1/2 e o, 2 2,.1/2 .

| [(xg - z)] dx

[ el = _ 2 -2 (=
"",A.U ""}'A.G

= 232 A (2exd) n(n) - () k()] (4.82)

and
£ - 2y .2 2y 1-1/2
J’lpld}:=-~~/2 J’l [(“m ,;] )] /
%,
g K (4.60)
=gy k() L€
A Ky
2u \1/2 ,
viere T = (l+u) 1/2 q = (ltla) / . thus,

: 1/2 1/2 1/2
GMEB _ 27 () T . B /2 fa(4) - wi(t
AR = S exp [ | 5 (1+uw) {B(t) k(1)) ]

(4.9)

the values of the splitting ABare calculeted from the above

formule for variou« values of x» for the lowcst two eigenvealues



and arc compared with the corresponding accurate values in
(i~ o
Loble (IV.2). 'uc mean enery D; reguired in (4.0) is

evalunted from Lable (IV.1). ‘the Y% valucs for splitting

arc gurprisingly ocod.

For crell A 2 gimple analytic approxiiniase expression

Lor AD may wow bo obtained froo (4.9) using the following

\
cxpangions for the elliptic integrals (CGredsihteyn and Jyzhik

1965) ;

k) = ZE(1-4 if]sz) +o(xh)

3(k) = F(L-F%) +0xh, ks 0 (4.10)
and

, 4 1

(k) = 1 ﬁT + % (1n %7 - 1) k'2 + O(k'4 In k')

+ (k™ 1m k),

b n era was

k' o= ((1-k%), k+ 1, k' » U . (4.11)

Un subsiituting thesc cxpansions in (4.9), we obtain for

o .
Ay T O,

iale

"v"\"‘“" o 2}[-‘2»- 0 ~7 e l.?‘ { o
AT . (1 + 0Of )\En)) exp [ 5 (1L + 0(xe

o
o In len)] )

(4.12)
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<ABLE (IV.2) : Comparison of the WKB values for “he splitting
with the correspondings accurate values

.-~ L

. aocurﬁ,teT accurate ,, . WKB
A il < -’_‘,, A
A B,,1 Ay 4 /DB

TR M e e U e B e Y M b Memee AR M Raied e M e b b & e W A A o e e e e e G aan B

.02 C.Lul 000 002 1uT 2 1.080

0D 0.000 VUt B3¢ 777 & 1.082
L0 G.u00 186 225 055 5 1.08%
.05 0.001 711 492 025 5 1.084
= .06 0.wU7 299 775 950 8 1.084
U7 U.UPU 091 542 075 & 1.082
ot 0.042 045 0G5 C27 6 1.077
el C.UT3 282 440 234 2 1.06¢
LU 0.112 43% 706 136 5 1.048
L1 0.157 407 347 591 1 1.048
.12 0,206 073 03% 949 6 1.0%5
LD U.256 647 277 892 3 1.022
.14 .07 e Qub BE3 U 1..012
<15 U.058 587 642 582 G 1.. 004
.16 0.408 462 474 629 9 1.00%
LT 0.457 059 975 G642 5 1.010

PR Bt W A N e R e M
i ke e R e ke e R SR Aol e -
B o



CHAPTER °
THE TRANSITION MOMENTS

“he transition moments betireen the anlinrmonic oscilla~

tor cne.pyv Cirenstotes |n> and |n'> ave the matrix elements

\]

<n}xhln‘>. he best knowsm cstimates (Chan and Stelman 1963,
Iinid 170) ol the tranuition moments were obtained for the
pure guartic oscillator using variational eirenfunctions.
e vari. . bional cigenfunctions are known o be wuch less

aocurate than the corresponding cigenvalucs and are uncuitavle

Cnr the computation of the trancition moments of hipgh accuracy.

q. secumnte evaluation of the eigenvalues and tle eigen-
tunctions in this work makers 1t posisible to ohtain accurate
fpun:. L bion moments. Further, the matrix elements <nlxklnﬁ>
satisly an exact linear recurrence relation in the index k
Janer e 1977) . ‘Ihe recwirence reloation meles possible the
alu- tion of all hisher moments in te-me of lover moments and

ci..envalues, without integration.

<K
V.l The uecurrcpee ielation in <nlx"|n'>

. - M P
- - - -

oy . ; 2
- o consider bthe class of llamiltonilans T = p° + V(x),

. . o mm ot - ™ —_
vhere V(x) is @ al polynomial function and Hln> = En[n>.

Then

ol [0 ms = (8 = Bgn) <alin> (5.1)
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- 2 R A e e s Z
fo, an avrbitr aAry opewrator . Un settin o T = yl\_ ~né _]k“lp
- + 3 - s - o

e ~Ney - RV > N e o -
cuccenuively in (5.1) and usin: the Scharddinger equation,

follo ding relsotions are obhtained:

o s
|af> - 2iken |xT lp]n‘>.
(5.2)

p|n’>

'!\.
(En - En;> <nlaln’>= k{k-i) <z

T ‘!:"':J- ’ 1-—"~
(Bn - “nﬂ) <nlx Tplnt> = ~(11) (k-2) <n|x“ 2

- 2i(k-1) E, <nlzk"2[n‘>

+ 2i(k~1) <n Xk—Z

4

V(x)| n'> + dcn KTV 0,

where Vi(x) = 3V(x)/3x. (5.5)

e . . - T
Lliminoting the watrix elements of Xk lp and X~ )p from the

shove two relations, we obtain

4k(k~l)'<n]Xk“2V|n'> + 2k<n]xk“l Vin's

i Al 2 k - ) .:""2
(”n“Ln') <p|x|n'> + 2k (k-1) (3 +mn,)l<nlxl

n |n‘>

1

+ k(1-1) (k=-2) (k-3) <n}x“”4inﬁ>. (5.4)
For a polynomial potential V(x), the equation (5.4) reduces
to the required recurrence relation. [{he number of initial

matrix elements required TO start the recursion is u for a i

polynomial potential V(x) of degree 2p. 1IhT recursion

involves the same elements of all the matrices. IThus the nn‘~t£
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oY TR R - K . - . ¥
cleument of the lowest u matrices and the t1o eirenvalues u

ol
ond B

Iz
X" for any k. It may be noted that -rithcut %4l.e above

n arc suliicient to cetermine the nn'-th element of

recurniion one needs all the matrix clewents of the matrix
« [ [ e .. -

X to determine a gingle element of %, In the cose of the
cuartic anharmonic (potential function V(x) = %= + %)

and the pure quartic oscillavor (V(x) = AxA) the relascion

(Y.4) vields tho followins recuirencce relsbtions regpectively:

~

k2 - 2 %
|nt> = [(Bp~2,)" = 4577 <n|x¥|n> +

4 (%+1) » <nl|x

2k(k-1) (E+E,_,) <nl|x™“|ni>

n'’

+ k(k-1) (k~2) (k=3) <n]|x"%|n'> s (5.5)

41 (k+1) A <n{xk+2|n‘> = (EnwEnf)2 <n]xk%¢|n'>

+ 2k(k-1) (B +B_,) <n|x“"|n's

- K=
+ k(k-1)(k-2)(k~3) <n|x 4|n'> . (5.5)
Thur all higher moments for any particular transition of
the auartic anharnonic or the pure quartic ozcillator may

-

he obtained in terss of thce lowest non-zcro moment of that
transition. “The initial requirements in these cases i

e

effectively reduced to one moment because of Thc even
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syumetry of twe Hamiltonian, the other moment being zero.

- It R . g r ) - .

Tit lable (V.1) +the ratio of the ULl element for the matrices
v aed 2N e ‘
X, X7, ... x77 for %the nuartic anharwmonic and the pure

quitic omcill.tors ave tabuleted. To- large k The recurs

- 7
aions (5.5) and (0.6) yield

«-L

A(ﬁlc]n.>/kn|h Tn> k™, ko> e (5.7)

which describes Lho asymptotic behaviour of the moments in

)

chuse cagses.

v.2  Computation of the rramsition Moments

tae

I

The lowcr moments between vasious peirs olR
~nharmonic oscillator eigenstates may now e computed in
{he Following mammer. (he expansion coecfficients {a (E)}
for +the required ecigenfunctions are evaluated by substitub-
ine the cosresponding computed eigenvalues in the recuvsion
for {a, (B)}. Ve include ag many number of coefficients {a }
in the expansion ofan elg senfunction a3 were required for
obtaining the eigenvalue stable to 16 significant figures.
'he range ol intesration for the evaluation of the transi-
tion moments is truncated at x = %, the point in the non-
clasrical region at which the computed eigenfunction just
begins to increase 1n megnitude. Hince the cigenvalues

used are accuratc o 15 gignificant figuses, the computed
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cigenfunctions reach xtremely smell values in the non-
clwscical region befor they finally start increcasing in

maenitude for lavge [x| (see scetion IIL3). The contribu-

tion to the transition momenty from the rcest of the
conliruration spoce is estimated o be <O(lu“l4)a hus,
; ( N p R s s (n), (n")_ 2
<nlx™n'> = 1 1 a. n) . gn) f LEHITTT -l K ag
; s J J
-] J "‘XA
(5.8)
. 1 (n) uw(n)xz 1 (nt) (n*)
mhere n> = ez a. e - i > = e . =o\n ‘
eI = T e BERSS A T I

- 1 ” . . :
I and N' are the normalization constants for the respective state

MG dintegraly involved in (5.8) mey he expressed in terms
2
s . 28 _-Bx -
ol thv integralc IZS(B) = d- %<8 P dx, (s = integer),

which satigfy the recurrence rclation (scee Appendix B),

(28-1) I, ,(B) - (2s+1+28) I, (B) + 28 I, ,,(p) =0 .
(5.9)

‘‘he octual procedure for the cvaluatican of Izs(s) is described .
in Appendix B. The computation of momencs therefore requires
no intcgration.

The non-zero matrix clements of x and X2 in the lowvest

ten cisenstates of the guartic anharmonic and the pure quartic
oscillators for A= 1 wcre thus computcdé and are presented

in ‘Pables (V.2) and (V.J). ZEach moment given in the Tables
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ct

I \‘ - N . .
(V.2) and (V.3) hasg been checked by verying « in the

o

aspropriate ronge and io claimed to e accurite vo all 1
fimwen given in tableg. The transition momcents for the
gurrtic anhormonic ogcillat ar reporteé for ths ficss
time in this wourk., Amony, the cirlicry literaturc ouly &

few non~-zero ropmente for e nure quersic orcillator vere

tmy
Q

evaluated to some accuracy (Chan and Stelman 1965, id

1670). she corresponcing prescns values for the pure

guartic omcillator moments arce ot least 5-6 figures more
sccurate. ITurtlhow, the recursions (L.5) and (5.6) give

10 same accuracy as of the

r~|

All the Lirher moments to

Lowest non-zoro moment for thet transition, without integra-

tion.
3 ¥ # bl i

The work presented in this theeis Torms & part of a paper
ontitled 'The Anharmonic Oscillator! accepted for publica-

tion in the Proceedings of the Royal Society.

R PO S . P
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(v.1) The ratio f<l| 2| 0>1 for the Quartic

Anharmonic cnd the Pur= Quaxulc Oscillators
from recursions (5.5) and G).

e et b w1 et mr o s

R R T e e

f<lb4107<wx cﬂ

Mo me e n e

he Ture Quartic Uscillasor Sriic Anhe

PO

ihe Quaﬂulc Anharmonic

(A = 1) Cscillator (A= 1)
1.0 1.0
U.9%7 y78 052 782 a7l v.B82% 567 331 595 526
1.301 642 584 655 12 1.073 506 435 204 95
2,004 LCL 48% 536 68 1.362 740 50 €28 U0
6.U36 204 29 521 49 %.906 125 257 322 ¢2

16.628 197 346 91C 1L
51.621 %52 Su2 9771 5
178.52¢ w06 31l 098 Q%.500 722 956 4
678.615 442 628 609 3%2.840

2 799.464 881 619 44 1

12 430.058 107 522 6 5 408,354 T73 052 46
58 931,717 084 750 © 24 284.228 551 754 5

297 J37.007 AL 684 116 109.487 781 311
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APPONDIX A

e describe here the procedure adopved for ovtaining
initial estimates of the eigenvalues in the ‘boundarry layer?
ween n o ls large. Lot uc ouppose that e decired eigenvalue
is T, (X =2x,), where (n, A ) Hes 1n the '‘boundary layer'.
An initial estincte for itv iy obtained ag follows:

[}

(i) ‘e first obtain accurste eipgenvalue B, (x = xo), where
(n, AO) lies in the pure anharmonic region and the initial

catimate for it ig obtaeinabvle from the WKD formuls.

(ii) The desired value A =), i reached throunch a seocuence

v
of intermediate values { Ai} , 1 =0, 1, 2, ... . The initial
cotimate for En’(x = E}l)is ohtained uging accurate values

of B_ (a = xi) and the Waylcr series expansion. It sives

n
. initial o / . ‘fg .
L, OWap) =By )+ Ogg-ag) 53 |x= o L2
1
where
3E, ()~ By (Ag_q)
P x.—.xi— AT il

The values {Ai} are chosen sufficiently close to each other

so thet En(xi+l) may be computed avoiding jumps %o

Bnil (ki+l>'

(iidi) Eninitial(ki+l) is refined to 15-figure accurate eigen-

value En(xi+l) by the method used in this thesis (Section I1.2).
(iv) Steps (ii) and (iii) are continued Till the value A=21i,

is reached.



The recursive evaluotion of the integrels defined by

l o r2 -
I,.(8) = [ x°°% ¢7P® dx (3.2)
G

i, concidered in this A»pendix. On i.tegrating (

1—4

=.1) by

parts, we obtain ~ fellovin, inhomops.neous recurrence relation

26 I, ,(8) = (2041) I, (p) + ™ = c. (3.2)

cewribing (B.2) on replacing the index 's' by 's-2°

P8 I, (p) ~ (28-1) I, () + e =0 (B.3)

and eliminating the inhomorieneous part frow (B.2) and (B.D),
one obtains a %--term romogeneous recuvrence relation for

128(5) :

20 Izﬁﬁa(ﬁ) 2s+1+23) Izs(P) 4 {(28-1) 12s~2(5) = 0.

(B.4)
‘the inkegrals Igm(B) mey thereiore we computed for any value
of & by succesiive application of the relation (B.4). Iiowever,
since the computaisiors are corried out perforce rith rounded
values, the relative errors grow and overtake the wanted

funcition when a straightforwvard use of the above recursion
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ig made in forward direction (increasin_ s). This occurs
when a i1ecurience relrotion hag ti0o independent solutions
an¢ the solutvion de-ired ig divpiching o8 the index 'af

increases, whiilc the compinion szolvision ig increesing. On

[

O the direcoion e roles of the btwo solutions are

interclanned and tha contribution oi desired colution now

increases wiile the un ~nted solvition Jdimmiohes {(Abremowitsz
an¢ Stegun 1965). Comnpute tion of the intesrals I
thwerefore done by applying the recurcion (...4) in basckward

direction (decreasing s). Ihe rocursion is atarted from a

values { liller 1952). The values obtained in this
nanner differ fromn the desiced golution by a constant
multiplier which i~ calculated from the values of IO(B)

ohtained from the tables for the erior functions.
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